

Fourth Semester B.E. Degree Examination, Feb./Mar. 2022 Design and Analysis of Algorithms

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain orders of growth for large input size and write values of following functions for analysis of algorithms:
$\log _{2} \mathrm{n}, \mathrm{n}, \mathrm{n}^{2}, \mathrm{n}^{3}, 2^{\mathrm{n}}, \mathrm{n}$!
(10 Marks)
b. Explain asymptotic notations of algorithms with graph.
c. Define space complexity of algorithms with example.

2 a. Write general plan for analyzing time efficiency of non-recursive algorithms and find the running time of matrix multiplication algorithm.
(10 Marks)
b. Write short note on stacks, queues, graphs trees and sets.
(10 Marks)

Module-2

3 a. Define divide and conquer technique and write steps to search the number 14 in the following sequence using binary search algorithm: $74,32,18,12,76,14,23,28,10$
(10 Marks)
b. Sort the following numbers using Quick sort algorithm:
$54,26,93,17,77,31,44,55,20$
(10 Marks)

OR

4 a. Solve the following matrix multiplication using Strassen's matrix multiplication method:

$$
\mathrm{A}=\left[\begin{array}{ll}
3 & 2 \tag{10Marks}\\
5 & 6
\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{ll}
5 & 6 \\
1 & 3
\end{array}\right] \quad \mathrm{C}=\mathrm{A} \times \mathrm{B}
$$

b. Solve the following topological sorting problem using source removal algorithm. (05 Marks)

Fig.Q.4(b)
c. Write the MaxMin divide and conquer algorithm.
(05 Marks)

Module-3

5 a. Solve the following Job sequencing with deadline problem and find the maximum profit:

Jobs	J1	J2	J3	J4	J5	J6	J7	J8	J9
Profit	85	25	16	40	55	19	92	80	15
Deadline	5	4	3	3	4	5	2	3	7

b. Construct a Huffman Tree for the following data and obtain its Huffman code:

Character	a	b	c	d	e	f
Frequency	5	9	12	13	16	45

(10 Marks)
(10 Marks)
OR
6 a. Define minimum cost spanning tree and find the minimum cost spanning tree for the following group using Kruskal's algorithms.
(10 Marks)

b. Sort the following sequence using Heapsort algorithm:
$15,19,10,7,17,16$
(10 Marks)

Module-4

7 a. Find a minimum cost path from s to t in the multistage graph of Fig.Q.7(a), using Dynamic Programming Forward approach.
(10 Marks)
b. Solve the following Knapsack problem using Dynamic programming:

Knapsack capacity W = 5

Item	Weight	Value
1	2	12
2	1	10
3	3	20
4	2	15

(10 Marks)

8 a. Find all pairs shortest path for the following graph using Floyd's algorithm:

Fig.Q.8(a)
(10 Marks)
b. Find the single source shortest path in the following graph using Bellman Ford algorithm.

(10 Marks)

Module-5

9 a. Let $W=\{5,7,10,12,15,18,20\}$ and $\mathrm{M}=35$ find all the possible subsets of W that sum to M. Apply sum of subset algorithm.
b. Define Backtracking technique.
c. Explain NP-Hard and NP-complete problems.

OR
10 a. Solve the following assignment problem using Branch and Bound technique:

	Job1	Job2	Job3	Job4
Person A	9	2	7	8
Person B	6	4	3	7
Person C	5	8	1	8
Person D	7	6	9	4

b. Draw the state-space tree of solving the four queen using Backtracking.
(10 Marks)
c. Write short note on LC Branch and Bound solutions.

